Flow Based Mitigation Model for Sinkhole Attack in Wireless Sensor Networks using Time-Variant Snapshot

Kannan Devibala
Assistant Professor, Department of Computer Science, Ayya Nadar Janakiammal College, Tamilnadu, India
Email: sreebalahoney@gmail.com

Dr. Saminathan Balamurali
Professor, Department of Computer Applications, Kalasalingam University, Krishnankoil, Tamilnadu, India
Email: sbmurali@rediffmail.com

Dr. Ayyanar Ayyasamy
Assistant Professor, Department of Computer Science and Engineering, Annamalai University, India
Email: samy7771@yahoo.co.in

Dr. Maruthavananan Archana
Assistant Professor, Department of Computer Science and Engineering, Annamalai University, India
Email: archana.auces@gmail.com

Abstract: Wireless Sensor Network (WSN) becomes popular at all levels due to the technology growth with equal frequency of risk towards various attacks. In this paper, proposes a novel Flow Based mitigation model to detect and mitigate Sinkhole attacks with the support of time variant snapshots (FBSD). The base station monitors the flow and at each time frame it computes the traffic transition pattern which shows the list of sensor node the packet has travelled. From the traffic pattern the presence of sinkhole is identified using snapshot of the network which is taken at different time frames. The base station maintains the location details of all the nodes in the network and assumes that the nodes are equipped with similar transmission range and capacities. The geographic and physical features of the node have been used to mitigate the sinkhole attacks.

Keyword: Sinkhole attack; Wireless sensor network; Time-variant snapshot; Traffic pattern.

1. INTRODUCTION

Wireless Sensor Network (WSN) is a high frequent term pronounced by researchers during last decade due to the restrictions like limited energy and deployment nature induces the researchers to think more about WSN [1]. The loosely couple nature of WSN increases the feasibility of different attacks to be performed by adversaries. One among the possible attack is sinkhole attack which makes the overall traffic to be passing through a particular node [2, 3].

The sinkhole attack is one an adversary advertises its neighbors as the only neighbor which has shortest path [4] to reach the base station. While receiving this information what the neighbors will conclude is the adversary is located at most closure neighbor. Here after the neighbor nodes are forwards the packet through the sink which can perform any kind of attack in the network. The adversary can read packets which are coming from compromised nodes and perform modification, selective forwarding, and selective dropping attacks. So, that there is a higher requirement of protocols to detect mitigation of Sybil attacks [5, 6].

In WSNs the intermediate nodes participate in forwarding data packets to reach the destination. Once a group of node compromised with the adversary then the packets are passing through the same path to reach the destination [7]. The higher configured adversary has more power to generate Sybil attack and could participate in large number of transmission and routing processes. So, the traffic pattern and flow information’s could be used to detect the Sybil attacks [8]. Flow based methodologies has been discussed in many papers in the literature but has not been utilized properly to detect and mitigate the Sybil attacks.

The presence of multiple adversaries makes the
traffic pattern to be changed at regular interval. The adversary can generate attack up to the time according to the energy constraint and will go to hell after that. So that the traffic pattern will get change at each time frame [9, 10]. This feature could be used to find out the Sybil attack and adversaries.

Devibala et al., [15], has proposed promiscuous mode method to detect and isolate the malicious node during wormhole attack by using ad-hoc on demand distance vector routing protocol with unidirectional antenna. The nodes which are not participating in multi-path routing generate an alarm message during delay and then detect and isolate the malicious node from network. Jin Qi et al., [16] have realizes a mechanism to launch sinkhole attack at WSNs and then present some mechanisms to detect and defense this type of attack. Finally, perform some experiments to verify our methods.

Otero and Hernández [17], have address a particular attack to the location and neighbor discovery protocols, carried out by two colluding nodes that set a wormhole to try to deceive an isolated remote WSN node into believing that it is a neighbor of a set of local nodes. To counteract such threat, present a framework generically called Detection of Wormhole Attacks using Range-Free method (DWARF) under which derive two specific wormhole detection schemes, the first approach, DWARFLoc, performs jointly the detection and localization procedures employing range-free techniques, while the other, DWARFTest, uses a range-free method to check the validity of the estimated position of a node once the location discovery protocol is finished.

Sheela et al., [18] have proposed a scheme to defend against sinkhole attacks using mobile agents. Mobile agent is a program segment which is self controlling. They navigate from node to node not only transmitting data but also doing computation. They are an effective paradigm for distributed applications, and especially attractive in a dynamic network environment. Ayyasamy [19] has discussed a routing algorithm with multiple constraints is proposed based on mobile agents. It uses mobile agents to collect information of all mobile sensor nodes to make every node aware of the entire network so that a valid node will not listen the cheating information from malicious or compromised node which leads to sinkhole attack [20, 21]. The significant feature of the proposed mechanism is that it does not need any encryption or decryption mechanism to detect the sinkhole attack [22, 23]. There are many works that have been carried out in the past by various researchers in the area of sinkhole attacks over wireless networks for providing effective security to networking systems [24-29].

3. PROBLEM STATEMENT

Most of the sinkhole detection mechanism uses various metrics which are computed based on traffic flow, geographic information and so on. Still there are problems with the earlier approaches as follows:

Network Overhead: some of the approaches use control messages to collect the neighbor information which increases the overhead of additional packets.
transmitted and indirectly increases the traffic and latency in the network.

Throughput: The overhead generated by the earlier approaches due to network overhead reduces the packet delivery ratio and network throughput.

Energy Overhead: The transmission of control messages consumes some energy of all the nodes participate in flooding control messages which reduces the residual energy of all the nodes.

Lifetime: The energy overhead generated by flooding control messages and other protocol support packets reduces the life time of the node as well as whole network. Also if there is a centralized sinkhole detection mechanism it affects the energy and lifetime of a particular node or else if it is distributed one then it affects many number of nodes.

4. FLOW BASED MITIGATION MODEL

The proposed sinkhole detection mechanism has four different phases namely: Traffic Log Generation which generates the log about a particular traffic, traffic transition pattern –identifies the traffic pattern which has set of node names to represent the transition path, Time-Variant Snapshot which generates the topology snapshot of the network and finally Sinkhole Detection- which detect the sink node using the results of previous stages.

4.1 Traffic Log Generation

We assume that each node forwards the packet towards destination through some of its neighbors and appends the address of its own at the transition field of the packet.

Algorithm 1: Traffic Log Generation

Step1: Start
Step2: Initialize traffic log TrLog. // TrLog-Traffic Log
Step3: receive packet P.
Step4: If packet Type == Data then
 Extract the following fields.
 Source Address SA = P (Source Address).
 Destination Address DA = P (Dest. Address)
 Time Received Tr = compute current Time.
 Transition address TA = P (Transition Address).
 TrLog = (Σ TrLog) + (SA, DA, Tr, TA)
End
Step5: Goto step3.
Step6: Stop

4.2 Traffic Pattern Generation

The traffic transition pattern (Algorithm 2) is computed using the log produced by the base station. The traffic log is cleaned before it used to detect the sinkhole, to overcome the unnecessary memory overhead generated by storing the entire traffic log for prolong period of time. Only a few numbers of traffic pattern will be maintained and at each time frame a new instance of traffic pattern will be feed into the traffic log table so that the last three time frame log only maintained at the traffic log. So that the log file contains the information about packets which are received at few previous time frames. The packets received at very old time will get deleted.

Algorithm 2: Traffic Pattern Generation

Step1: start
Step2: read traffic log table TrLog.
Step3: read traffic transition pattern table Tp.
Step4: for each log from TrLog
 TrLog = read log from TrLog.
 //Extract Source Address SA,
 //Transition path Trp,
 //Destination Address DA, Time Tc from TrLog,
 Compute traffic transition path Tp = {Source Address, Destination Address Transition Path}.
 Tp = Σ Tp + (Tp + Tc)
End
Step5: for each log from TrLog
 If TrLog (Tp) < Time Frame end
 Delete Tp from Log table.
 TrLog = ϕ(TrLog, Tc).
End
Step6: stop.

4.3 Traffic Log Generation

Unlike other geostatic methods the propose method

<table>
<thead>
<tr>
<th>Source address</th>
<th>Destination address</th>
<th>Traversal path</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>F</td>
<td>13:21:58</td>
</tr>
<tr>
<td>G</td>
<td>H</td>
<td>F</td>
<td>13:21:59</td>
</tr>
<tr>
<td>C</td>
<td>H</td>
<td>F</td>
<td>13:20:18</td>
</tr>
<tr>
<td>L</td>
<td>M</td>
<td>F</td>
<td>13:20:17</td>
</tr>
<tr>
<td>N</td>
<td>O</td>
<td>F</td>
<td>13:20:16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Seq No.</th>
<th>PTYPE</th>
<th>Data Field</th>
<th>Source Address</th>
<th>Transition Address 1:2:3:4</th>
<th>Destination Address</th>
</tr>
</thead>
</table>

The base station extracts the transition field and computes set of nodes present in the transition path logs (Table 1) to the data base (Algorithm 1). In Table 2, each node which forwards the packet adds its own address at the transition address field before forwarding the packet to the destination.
collects one time snapshot at the earlier time to get to know the topology information. From the topology information it generates the snapshot and updates the route table and node table (Algorithm 3). The route table contains information about set of nodes and routes to reach other nodes whereas the node table has information about the neighbors of the node. At later stage the base station generates the snapshot at regular time interval to detect the presence of sinkhole. Using the traffic pattern which is computed earlier, it finds out set of nodes which it feels guilty about working condition.

From the traffic pattern generated it verifies the presence of each node. If it does not find any node then it sends life cycle message to the guilty node and waits for the reply. Upon receiving the message the node which has not participate in any of the transmission in particular time window will reply with the message which contains information about the residual energy and neighbors. The control message will be passed to the guilty node only through the longest path which is not present in the traffic pattern. This assures delivery of life cycle message at the guilty node and it sends the reply through the path of request. This procedure reduces the overhead generated by flooding control message throughout the network to collect neighbor information’s.

Algorithm 3: Time variant Snapshot

Start
1. Init Guilty set Gs, Timer T.
2. Read Traffic Pattern Table TP, Route table Rt, Node Table N, Snapshot S.
3. For each node N, from N
 a. For each traffic pattern TP, from Tp
 i. Transition path
 TP = ∆ × (TPi, Traversals Path)
 ii. If TP ∋ N, then
 Add to Gs = ∑ N + Ni
 End
End

Algorithm 4: Sinkhole Detection

step1: start
step2: read Traffic Pattern Table Tp, read Snapshot S.
step3: initialize guilty set Gs.
step4: compute common node from Tp.
 AS-Adversary Set = N(N(N) ∋ TPi)
step5: for each Tp from Tp
 if Tp, ∋ ASi then
 Ap = compute available path from Route table Rt and snapshot S.
 validate the distance of route used and routes from Ap.
 if found guilty then
 create alert message AM={seq. No, Source Addr, Destination Addr, Sinkhole Addr}
 send AM through different path.
 end
 end
step6: stop

5. RESULTS AND DISCUSSION

The proposed flow based sinkhole detection approach has been implemented in Network Simulator-2 (NS-2). We have designed network topology with different scenarios with different number of nodes. The proposed methodology has been evaluated with different density networks with multiple sinkhole.
nodes. The following Table 4 shows the simulation parameters used to evaluate the proposed method. NS-2 has written using C++ language and it uses Object Oriented Tool Command Language (OOTCL). It came as an extension of Tool Command Language (TCL). The simulations were carried out using a WSN environment consisting of 71 wireless nodes over a simulation area of 1000 meters x 1000 meters flat space operating for 60 seconds of simulation time. The radio and IEEE 802.11 MAC layer models were used.

TABLE IV THE PARAMETERS USED IN OUR SIMULATION

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>NS-allinone 2.28</td>
</tr>
<tr>
<td>Protocols</td>
<td>FBSD</td>
</tr>
<tr>
<td>Area</td>
<td>1000m x 1000m</td>
</tr>
<tr>
<td>Transmission Range</td>
<td>250 m</td>
</tr>
<tr>
<td>Traffic model</td>
<td>UDP, CBR</td>
</tr>
<tr>
<td>Packet size</td>
<td>512 bytes</td>
</tr>
</tbody>
</table>

The overhead generated by sinkhole detection process has been shown in Figure 2. It shows that the proposed approach has produced less overhead than other methods while performing sinkhole detection process.

5.2 Throughput Performance

Throughput is the rate of packets received at the destination successfully. It is usually measured in data packets per second or bits per second (bps). Average throughput can be calculated by dividing the total number of packets received by the total end to end delay.

5.3 Packet Delivery Fraction:

The packet delivery fraction defines the rate of data packets received at a destination according to the number of packets generated by the source node. The packet delivery fraction is computed as follows:

\[
PDF = \frac{(\text{No. of packets Received})}{(\text{No. of Packets Sent})} \times 100.
\]

In Figure 3 shows the overall throughput ratio of different methods and it is clear that the proposed FBSD method has achieved higher throughput than other methods.
In Figure 4 shows the performance of packet delivery fraction of different algorithms and it shows that the proposed FBSD method has higher packet delivery fraction than other methods.

5.4 Average End-to-End delay

Average end to end delay includes all possible delay caused by buffering during route discovery latency, queuing at the interface queue, and delay at the MAC due to retransmission, propagation and transfer time. It is defined as the time taken for a data packet to be transmitted across a MANET from source to destination.

![Figure 5 End-to-end delay compared with existing methods](image)

In Figure 5 shows the latency ratio of different methods and it shows clearly that the proposed method has lower latency ratio than others.

6. CONCLUSION

The proposed FBSD method monitors the traffic flow and extract the features of traffic and produces logs into the data set. Then traffic transition pattern is generated to compute the traversal path of the packet. At the third stage a time variant snapshot of the network is generated to compute the traversal path of the packet.

REFERENCES

Authors Biography

K. Devibala is an Assistant Professor, Department of Computer Science, Ayya Nadar Janaki Ammal College, Sivakasi. She received her M.Sc in Computer Science and Information Technology from the Madurai Kamaraj University of India, in 2008. She has the credit of publishing nearly 5 research articles in the referred and peer reviewed international journals/ conferences and presented nearly 2 papers in the national conferences. Her research interest is in Wireless Sensor Networks, QoS and routing protocol, computer network as well as network security.

Dr. S. Balamurali is a Professor of Statistics at Kalasalingam University. He received his MSc and Ph.D degrees from Bharathiar University, India. He has the credit of publishing nearly 52 research articles in the referred and peer reviewed international journals/ conferences and presented nearly 15 papers in the national conferences. His research interests include Statistical process control acceptance sampling and analysis of means, Wireless Sensor Networks, QoS and routing protocol as well as network security.

Dr. A. Ayyasamy is B.E. and M.E. in Computer Science and Engineering from Annamalai University, Chidambaram, Tamilnadu, India in the year 2006 and 2008 respectively. He is working as Assistant Professor in Department of Computer Science and Engineering, Faculty of Engineering and Technology, Annamalai University from 2007 where he obtained his Doctorate in 2015. He has the credit of publishing nearly 34 research articles in the referred and peer reviewed international journals/conferences and presented nearly 8 papers in the national conferences. His areas of interest are mobile ad-hoc network, wireless network, streaming media architectures, QoS and routing protocol, computer engineering as well as network security. He is also serving as Editor-in-chief of International Journal of Networking (BioInfo publications). He is also serving as an editorial board member for various international journals, and reviewer in IEEE, Springer, Ad Hoc and Sensor Wireless Networks (AHSWN) etc. He also accepted an invitation to be a Technical review committee member for many international conferences (India, USA, London, Malaysia...). He is a professional member of ACM journals, International Association of Engineering, and se-
Dr. M. Archana is an Assistant Professor in Information Technology, Department of Computer Science and Engineering at Annamalai University since 2008. She received her B.E degree in Information Technology with gold medal and stood one among the gold medalist of Annamalai University in 2007. She received her M.E (Distinction) degree in Computer Science and Engineering from Annamalai University in the year 2011. She was completed her Ph.D in 2016. Her areas of interest are image and video processing, broadcast tennis video, pattern classification and wireless network. She has the credit of publishing nearly 09 research articles in the referred and peer reviewed international journals and presented nearly 2 papers in the national conferences. She is a member of International Association of Engineering.