
 www.ijaceeonline.com ISSN: 2456 - 3935

International Journal of Advances in Computer and Electronics Engineering
Volume: 7 Issue: 9, September 2022, pp. 1 – 8

Inference Speed Optimization of Deep Neural

Network on Heterogeneous Devices

Mohammad H. Ismail
Department of Technical Computer Engineering, Al-Hadba University College, Iraq

Email: mohammadhaqqi@hcu.edu.iq

Shefa A. Dawwd
Department of Computer Engineering, University of Mosul, Iraq

Email: shefa.dawwd@uomosul.edu.iq

Fakhrulddin H. Ali
Department of Computer Engineering, University of Mosul, Iraq

Email: fhazaa@uomosul.edu.iq

Abstract: A set of models used in detection and recognition of sign language gestures are proposed to increase

the speed of inference by the concept of optimization using the TensorRT inference accelerator tool. This is done

by using different devices: Labtop, Jetson Xavier Nx, and Cloud Computing. When TF-TRT Integration

optimization is applied, the speed of Inference increases about 3x-11x for static sign language recognition

models and about 1x-3x for dynamic sign recognition models. While when using optimization of applied

TensorRT (TensorRT C++ API), the speed of Inference increases about 14x-110x for static sign language

recognition models and about 2x- 10x for dynamic sign recognition models.

Keyword: Deep Learning; Inference; Hetrogeneous; Optimization; TensorRT

1. INTRODUCTION
Detecting hand gestures in real time is a

challenging difficult problem. The presence or

absence of a sign in addition to determining the hand

gesture if it is static or dynamic should be done as

quickly and accurately as possible [1]. Then

recognizing hand gestures in real time quickly and

accurately is done. All of these are in response to a

sign recorded by a camera that captures a series of

video frames in different lighting conditions[2]. This

is done using machine learning methods to detect and

to recognize gestures and translate them into text. The

accuracy in detecting and recognizing the static or

dynamic hand gesture is not only the problem, but the

speed factor is very necessary in applications with

time constraints. There is a possibility to use modern

architectural systems in computers, in order to solve

the problem of execution time, and improve the

efficiency of the speed, by relying on multi-core

CPUs and the GPU, and provides the ability to

perform tasks in parallel with each other[3]. The

objective of this research is to speed up the inference

on GPU and CPU by using different devices for: a-

Detection model. b- Static single and Multi-Models

recognition. c- Dynamic single and Multi-Models

recognition. Heterogeneous computing is a program-

ming paradigm that distributes computational tasks

across several processor types to complete one work

quickly and accurately. Central processing units

(CPUs) and graphics processing units (GPUs) are two

common processor types that may be used by a heter-

ogeneous application to do portions of the required

calculations on the CPU and other parts on the GPU.

To maximize power and performance, heterogeneous

computing uses a variety of processor types. GPUs

are computing systems with many compute cores that

enable highly parallel computation and were initially

designed for graphics processing. GPUs are made up

of various computing units, each of which runs sever-

al threads in a lock-step method. For processing, het-

erogeneous computing uses both the CPU and the

GPU. A GPU aggressively executes context switching

to hide memory access latency, as opposed to a CPU,

which employs a hierarchy of memory to speed up

memory access. As a result, the GPU is best in paral-

lel data applications, whereas the CPU specializes in

general-purpose computing [4].

There are several single and multi-models used in

the detection and recognition of static and dynamic

gestures in Arabic sign language Table I.

Heterogeneous devices are used for the purpose of

evaluating the optimization of inference.

Cite this paper:

Mohammad H. Ismail, Shefa A. Dawwd, Fakhrulddin H. Ali,
"Inference Speed Optimization of Deep Neural Network on

Heterogeneous Devices", International Journal of Advances in

Computer and Electronics Engineering, Vol. 7, No. 9, pp. 1-8,
September 2022.

ISSN: 2456 - 3935

International Journal of Advances in Computer and Electronics Engineering
Volume: 7 Issue: 9, September 2022, pp. 1 – 8

 www.ijaceeonline.com 2

2. METHODOLOGY

2.1. Inference on Heterogeneous Device
In Deep Neural Network (DNN), an inference

process is an act of feeding new input data into a

trained DNN model to create a prediction in terms of

values or labels. Several factors affect inference

performance in computer vision, including the kind of

DNN model, inference engine, feature extraction, and

input image size. The measures used to compare and

analyse inference performance are as follows[8]: 1.

CPU usage: the rate at which the CPU is used during

inference. Value is represented as a percentage and

ranges from 0% to 100%. 2. GPU usage: the rate at

which the GPU is used during inference it’s ranges

from 0% to 100%. TableII shows the specifications of

Devices for training and inference used in this paper.

2.2 Model Performance Optimization(S)
The goal of this part is to improve model perfor-

mance by optimization using the TensorRT [9] infer-

ence accelerator tool. For real-time assessment and

on-board feasibility testing on edge devices, this is

primarily for the purpose of increasing the frame per

second (FPS) rate. A second benefit is to reduce the

onboard memory footprint on the target device by

using different optimization techniques. In DNN, an

inference process is an act of feeding new input data

into a trained DNN model to create a prediction in

terms of values or labels. Several factors affect per-

formance of inference in computer vision, including

the kind of DNN model, inference engine, feature

extraction, and input image size. NVIDIA presented

the TensorRT inference accelerator to optimize the

trained DNN model for reduced latency and greater

throughput inference on NVIDIA devices in order to

increase the speed of DNN inference on NVIDIA

devices. Layers are combined, kernel selection is

optimized, and normalization is used to achieve this

optimization. PyTorch, Caffe, and TensorFlow are

among the most common machine learning frame-

works supported. TensorRT is based on NVIDIA's

Compute Unified Device Architecture (CUDA), a

parallel programming software platform that runs on

top of their GPUs to conduct application computa-

tions more quickly and efficiently [10]. A model may

be optimized for inference with three tools provided

by TensorRT: TF-TRT (TensorFlow-TensorRT) inte-

gration, TensorRT C++ API and TensorRT Py-

thon API. There are parsers for Caffe, Open Neural

Network Exchange (ONNX), and TensorFlow models

included in the previous two tools. Models may be

created programmatically using the APIs provided by

C++ and Python. Nvidia's recommended technique for

importing TensorFlow models into TensorRT is TF-

TRT [11]. TensorRT C++ API and TF-TRT will be

applied in this work. Each approach used on the

trained model is briefly described here.

A. TF-TRT Integration: The TF-TRT integration

is the most simplest. It may not provide all of Ten-

sorRT's optimization advantages, but it does provide a

starting point within TensorFlow. Only the portions of

TensorFlow model that are compatible with TensorRT

optimizations will be optimized using TensorRT op-

timizations, while the parts that are incompatible will

remain as TensorFlow operations. This conversion

method additionally saves the model as a TensorFlow

Saved Model, allowing to take advantage of Ten-

sorRT improvements while maintaining the Tensor-

Flow model [12]. Figure (1) shows the TensorFlow

TensorRT workflow.

 B. TensorRT using TensorRT C++ API: In this

part, it is demonstrated how to use the TensorRT C++

API to make efficient inferences on an existing Ten-

sorFlow model. TensorRT may be deployed as

TABLE I MODELS FOR RECOGNITION & DETECTION

OF ARABIC SIGN LANGUAGE.

MODEL Reference

Static Sign

Language

Recognition

Single-model:

DenseNet121(DEPTH)

 [5]

Single-model:

 VGG16(RGB)

Multi-model:

DenseNet121(DEPTH)&

VGG16(RGB)

Dynamic

Sign

Language

Recognition

Single-model: ResNet50-

LSTM(RGB)

 [6]

Single-model: ResNet50-

GRU(Depth)

Multi-model:

ResNet50-BiLSTM-

Normalization

Detection

Sign

Language

Pose Estimation Distances

and Angles Features

 + Bi-GRU

 [7]

TABLE II THE SPECIFICATIONS OF STUDY USED

DEVICES.

LABTOP

CPU
Intel(R) Core(TM) i7-9750H CPU

@ 2.60GHz

GPU
GeForce RTX 2060 1920 CUDA

cores

JETSON

XAVIER NX

CPU 6-core @1.2Ghz

GPU NVIDIA Volta™ 1.1Ghz 384-core

CLOUD

COMPUTING

(KAGGLE)

CPU
Intel(R) Xeon(R) CPU @

2.00GHz

GPU
Tesla P100 15.9GB 3584 CUDA
cores

http://www.ijaceeonline.com/

ISSN: 2456 - 3935

International Journal of Advances in Computer and Electronics Engineering
Volume: 7 Issue: 9, September 2022, pp. 1 – 8

 www.ijaceeonline.com 3

Create and train

a Machine Learning

Model

TensorFlow

Saved Model

Use the pre-trained

Model

TRT optimized TensorFlow

Saved Model

Perform Inference

With TensorRT

Or

Deploy with

Optimize using

TF-TRT

Figure (1): TensorFlow TensorRT workflow[13].

 shown in Figure (2) by first converting a trained

model stored in one of the for mentioned frameworks

to an ONNX format. The model would next be

parsed by TensorRT's ONNX parser, which would be

used to create the TensorRT engine. TensorRT [14]

works by applying five forms of optimization strate-

gies for enhancing the throughput of deep neural net-

works. First phase, it increases throughput by keeping

model accuracy while quantizing models to float point

16-bit)FP16(or 8-bit integer (int8) data

type precision. This approach considerably decreases

the model size because it is changed from initially

FP32 to FP16 version. A layer and tensor fusion ap-

proach is then used to further optimize the utilization

of onboard GPU memory in the next phase. Kernel

auto-tuning is the third phase in the process. In this

most essential phase, the TensorRT engine narrows

down the ideal network layers and batch sizes de-

pendent on the target GPU. By distributing memory to

tensors only during the time they are being used, it

reduces the memory footprint and reuses memory.

The next stage is to handle numerous input streams in

parallel and then tune neural networks on a periodic

basis using dynamically produced kernels. To get the

most out of the Jetson Xavier NX, it is needed to set

the power choices to maximum. The commands “sudo

nvpmodel -m 0” and “sudo jetson_clocks” may be

used to set the Jetson to maximum power use[16].

TensorRT optimizes the network after it has been

trained, changing the structure in an indeterminable

manner. Three alternative configurations were used in

the optimization [17]:

INT8 – weights and activation have INT8 precision.

FP16 – weights and activation have FP16 precision.

FP32 – weights and activation have FP32 precision.

In this paper, we evaluated the suggested technique

on an NVIDIA Jetson embedded device with hetero-

geneous accelerators. An octa-core CPU, a GPU, and

two Deep Learning Accelerators DLAs are included

on the board. For deep learning processes, the DLA is

a fixed-function acceleration engine. DLA's goal is to

accelerate convolutional neural networks entirely on

hardware. Various layers are supported by DLA. The

DLA is an accelerator that uses very little power, but

its processing capacity is much lower than that of the

GPU.

3. RESULTS AND DISCUSSIONS
Table III shows the Inference speed on GPU and

CPU for Sign Detection Model by using different

devices laptop, cloud, and Jetson. One can see that the

Inference speed on GPU in the case of using the lap-

Create and train

a Machine Learning

model

Saved model

Use the pre-

trained model

ONNX format

TensorRT optimizer

TensorRT engine

TensorRT runtime API

Machine Learning frameworks

PyTorch, TensorFlow, Caffe2

Or

Deploy with

Create TensorRT engine

Convert to ONNX format

Figure (2): TensorRT workflow [15]

TABLE III INFERENCE ON GPU AND CPU FOR SIGN

DETECTION MODEL BY USING DIFFERENT

DEVICES.

DEVICES

INFERENCE

 ON CPU

INFERENCE

 ON GPU S
p

eed
 u

p

F
P

S

G
P

U

U
S

A
G

E
%

C
P

U

U
S

A
G

E
%

F
P

S

G
P

U

U
S

A
G

E
%

C
P

U

U
S

A
G

E
%

LAPTOP 43 0 20 42 19 18 0.98x

JETSON
 XAVIER NX

11 0 80 50 60 70 4.5x

CLOUD
COMPUTING

35 0 100 36 4 90 1.03x

http://www.ijaceeonline.com/

ISSN: 2456 - 3935

International Journal of Advances in Computer and Electronics Engineering
Volume: 7 Issue: 9, September 2022, pp. 1 – 8

 www.ijaceeonline.com 4

top or the cloud is close to Inference speed on CPU,

while in the case of using the Jetson, the Inference

speed on GPU is up to 5x the speed on CPU. The

reason for this belongs to the mediapipe that supports

the GPU in the Jetson, while it is not possible in other

devices, and it runs on the CPU only. It is also no-

ticed that the Jetson is the fastest at Inference speed

on GPU. And the laptop is the fastest at Inference

speed on CPU.

The Tables IV&V show the Inference on GPU and

CPU by using different devices as cloud, laptop, and

Jetson for single and multi-models for static and dy-

namic sign language recognition respectively. In Ta-

ble IV the case of static sign language recognition

models, the Inference speed on GPU is slightly faster

than the Inference speed on CPU. It is also noticed

that the laptop is the fastest, in both Inference speed

on GPU and on CPU. Depending on the specifica-

tions of the devices used: Both laptop and Cloud are

4.1x-5.2x faster than the Jetson at Inference speed on

GPU. Also, both laptop and Cloud are 3.4x-7.8x

faster than the Jetson at Inference speed on CPU.

 In Table V the case of dynamic sign language recog-

nition models, the Inference speed on GPU is faster

than the speed on CPU, in Jetson it is about 4.7x-5.3x,

in the laptop it is 6.3x-9.4x, while in the Cloud com-

puting it is 22.6x-28.2x. It is also noticed that the

cloud is the fastest, in the Inference speed on GPU,

and the laptop is the fastest, in the Inference speed on

CPU. This is because the GPU in the cloud has higher

specifications, while in the laptop the CPU is the

highest. The laptop is 4.4x-6.7x faster than both the

cloud and the Jetson at Inference FPS on GPU. Both

the laptop and the cloud are 2.5x-4.3x faster than it is

in the Jetson at Inference speed on CPU.

The tool TF-TRT Integration was used to optimize

inference firstly in the models: Single-model: Dense-

Net121 (DEPTH), Single-model: VGG16 (RGB), and

Multi-model: DenseNet121 (DEPTH) & VGG16

(RGB) for static sign language recognition and sec-

ondly in the models: Single model: ResNet50-LSTM

(RGB), Single-model: ResNet50- GRU (Depth), and

Multi-model: ResNet50-BiLSTM-Normalization for

dynamic sign language recognition. This optimization

has been done when the executing of these previous

TABLE IV INFERENCE ON GPU AND CPU FOR STATIC

SIGN LANGUAGE RECOGNITION BY USING DIFFERENT

DEVICES.

D
E

V
IC

E
S

MODEL

INFERENCE

ON CPU

INFERENCE

ON GPU S
p

e
e
d

 u
p

F
P

S

G
P

U

U
S

A
G

E
%

C
P

U

U
S

A
G

E
%

F
P

S

G
P

U

U
S

A
G

E
%

C
P

U

U
S

A
G

E
%

L
A

P
T

O
P

Single-model:

DenseNet121
(DEPTH)

21.3 0 36 26.5 98 19 1.2x

Single-model:
VGG16 (RGB)

21.7 0 62 34.1 98 19 1.6x

Multi-model:

DenseNet121
 (DEPTH) &

VGG16(RGB)

16.9 0 66 23.9 96 20 1.4x

JE
T

S
O

N
 X

A
V

IE
R

 N
X

Single-model:
DenseNet121

 (DEPTH)

4.3 0 80 5.2 23 70 1.2x

Single-model:

VGG16 (RGB)
2.8 0 70 6.5 47 70 2.3x

Multi-model:

DenseNet121

 (DEPTH) &
VGG16(RGB)

2.2 0 80 5.0 58 82 2.3x

C
L

O
U

D
 C

O
M

P
U

T
IN

G

Single-model:

DenseNet121
 (DEPTH)

14.6 0 79 21.3 13 62 1.5x

Single-model:

VGG16 (RGB)
10.9 0 96 28.3 6 62 2.6x

Multi-model:

DenseNet121
 (DEPTH) &

VGG16(RGB)

8.1 0 100 20.8 13 60 2.6x

TABLE V INFERENCE ON GPU AND CPU FOR DYNAMIC
SIGN LANGUAGE RECOGNITION BY USING DIFFERENT

DEVICES.

D
E

V
IC

E
S

MODEL

INFERENCE

ON GPU

INFERENCE

ON CPU S
p

e
e
d

 u
p

F
P

S

G
P

U

U
S

A
G

E
 %

C
P

U

U
S

A
G

E
 %

F
P

S

G
P

U

U
S

A
G

E
 %

C
P

U

U
S

A
G

E
 %

L
A

P
T

O
P

Single-model:

ResNet50-

LSTM(RGB)

28.8 0 100 180 100 26 6.3x

Single-model:
ResNet50-

GRU(Depth)

38.6 0 100 290 96 21 7.5x

Multi-model:
ResNet50-
BiLSTM-
Normalization

11.6 0 100 109.4 100 23 9.4x

JE
T

S
O

N
 X

A
V

IE
R

 N
X

Single-model:

ResNet50-
LSTM(RGB)

8.8 0 96 41.1 98 20 4.7x

Single-model:
ResNet50-

GRU(Depth)

9 0 98 47.4 99 16 5.3x

Multi-model:
ResNet50-
BiLSTM-
Normalization

4.1 0 100 19.2 99 100 4.7x

C
L

O
U

D
 C

O
M

P
U

T
IN

G

Single-model:

ResNet50-
LSTM(RGB)

11.4 0 96 258 53 51 22.6x

Single-model:
ResNet50-

GRU(Depth)

12.5 0 98 297 44 55 23.8x

Multi-model:
ResNet50-
BiLSTM-
Normalization

4.57 0 100 128.7 68 67 28.2x

http://www.ijaceeonline.com/

ISSN: 2456 - 3935

International Journal of Advances in Computer and Electronics Engineering
Volume: 7 Issue: 9, September 2022, pp. 1 – 8

 www.ijaceeonline.com 5

models by using different devices cloud, laptop, and

Jetson. The Figures (3&4) show Fps measured by

using different devices cloud, laptop, and Jetson for

single multi-models for static and dynamic sign lan-

guage recognition respectively. In Figure (3) the case

of static sign language recognition models when us-

ing the optimization, the fastest speed is the cloud.

There is an increase in the speed of up to 2.6x-4.6x, in

the DenseNet121 (DEPTH) model and the multi-

model DenseNet121 (DEPTH) & VGG16 (RGB),

while it reaches up to 6.9x-11.3x for the model

VGG16 (RGB). This increase as a result of optimiza-

tion is also shown in the Figure (5). In Figure (4) the

case of dynamic sign language, the fastest speed is

when using the cloud also. When using the optimiza-

tion, there is an increase in the speed of up to 1.3x-

2.5x. This increase as a result of optimization is also

shown in the Figure (6). In the case without the use of

optimization, in static recognition models are slow

compared to dynamic recognition models, as in the

first it deals with single image, while in the second

with a series of frames, and after the optimization, the

relative increase in the acceleration of static compared

to dynamic. Figures (3&4) also confirm that the singe

model form is faster than the multi-model.

The tool TensorRT using TensorRT C++ API was

used firstly to optimize the inference in the models:

Single-model: DenseNet121 (DEPTH), Single-model:

VGG16 (RGB), and Multi-model: DenseNet121

(DEPTH) & VGG16 (RGB) for static sign language

recognition and secondly in the models: Single-

model: ResNet50-LSTM (RGB), Single-model: Res-

Net50-GRU (Depth), and Multi-model: ResNet50-

BiLSTM-Normalization for dynamic sign language

recognition. This optimization has been done when

executing these models by using Jetson device. The

Figure (3): Fps measure for recognition of static

sign language for single and multi-models using

different devices.

Figure (4): Fps measure for recognition of dynamic

sign language for single and multi-models using

different devices.

Figure (5): Speed up Inference for Recognition of Static

Sign Language for Single and Multi-Models by Use

Different Devices.

Figure (6): Speed up Inference for Recognition of

Dynamic Sign Language for Single and Multi-Models by

Use Different Devices.

http://www.ijaceeonline.com/

ISSN: 2456 - 3935

International Journal of Advances in Computer and Electronics Engineering
Volume: 7 Issue: 9, September 2022, pp. 1 – 8

 www.ijaceeonline.com 6

Figures (7&8) show the Inference Fps on GPU meas-

ure by using JETSON device for Static and Dynamic

Sign respectively. And the Figures (9&10) show the

speed up of inference on GPU measure by using

JETSON device for static and dynamic sign language

recognition respectively.

From the comparison between the Inference speed

in the case of static sign language and dynamic sign

language, the Inference speed in dynamic sign lan-

guage is much greater than in static one before the

optimization process, ranging from 3.8x to 7.9x, while

on the contrary after the optimization process, the

Inference speed ratio in static sign language to dy-

namic sign language, is ranging from 0.8x to 1.5x.

The figures also confirm that the single model form is

faster than the multi-model. From comparing the in-

crease in speed as a result of optimization according

to the models, the single model DenseNet121

(DEPTH) changes from 24.2x to 110.2x and the sin-

gle model VGG16 (RGB) from 18x to 64x, then the

multi- model DenseNet121 (DEPTH) & VGG16

(RGB) from 13.6x to 36.4x this in the static sign

recognition models. While the increase in speed was

the result of optimization in the dynamic sign recogni-

tion models, as it was from 2.2x to 9x for the single

model ResNet50-GRU (Depth) and the single model

ResNet50-LSTM (RGB) 2.5x to 4.9x, and then from

2.7xto 10.4x by the multi- model ResNet50-BiLSTM-

Normalization. From the comparison among Figures

(5 &6) and Figures (9 & 10), it is clear that there is a

high acceleration in the TensorRT C++ API method

compared to the acceleration in the TF-TRT method

for static and dynamic sign language recognition

models using the Jetson device.

Figure (10): Speed up inference on GPU measure for

dynamic sign language recognition using Jetson device

Figure (9): Speed up inference on GPU measure for static

sign language recognition using Jetson device Figure (7): Inference FPS on GPU measure for static

sign language recognition using Jetson device

Figure (8): Inference FPS on GPU measure for dynamic

sign language recognition using Jetson device

http://www.ijaceeonline.com/

ISSN: 2456 - 3935

International Journal of Advances in Computer and Electronics Engineering
Volume: 7 Issue: 9, September 2022, pp. 1 – 8

 www.ijaceeonline.com 7

2. CONCLUSION
Through a review, and analysis of presented previous

researches with regard to detecting and recognizing of

sign language and by discussing and analyzing Tables

I and II, which include a survey and comparison of

the presented researches in this paper, the following is

clarified: The deep learning-based classifier per-

formed better than all the various classifiers in terms

of recognition accuracy of sign language. There is

no use of the multi-model fusion to recognize

 Arabic sign language. There is no evaluation of the

different methods of fusion models to recognize Ara-

bic sign language. In general, the average accuracy

rate of 23 searches to recognize sign language by stat-

ic hand gesture is 94%, and the average accuracy rate

for 25 searches to recognize sign language by dynam-

ic hand gesture is 86%, therefore it is necessary to

develop a single model or multiple models to increase

the performance and accuracy of the static and dy-

namic Arabic Sign Language recognition.

REFERENCES

[1] Li,Y., and P. Zhang. "Static hand gesture recognition based on

hierarchical decision and classification of finger
features." Science Progress 105, no. 1 (2022):

00368504221086362.

[2] Oudah, M., A. Al-Naji, and J. Chahl, "Hand gesture
recognition based on computer vision: a review of

techniques." journal of Imaging 6.8, 2020.

[3] Lind, E., and Ä. P. Velasquez, A Performance Comparison

between CPU and GPU in TensorFlow, 2019.

[4] Bishwajit, D., “Power Analysis and Prediction for

Heterogeneous Computation”, M. Sc. Thesis, Faculty of the

Virginia Polytechnic Institute and State University, 2018.

[5] Ismail, M. H., S. A. Dawwd, and F. H. Ali, “Static hand

gesture recognition of Arabic sign language by using deep

CNNs”, Indonesian Journal of Electrical Engineering and

Computer Science 24, no. 1, pp: 178-188. 2021.

[6] Ismail, M. H., S. A. Dawwd, and F. H. Ali, “Dynamic hand
gesture recognition of Arabic sign language by using deep

CNNs”, Indonesian Journal of Electrical Engineering and

Computer Science 25, no. 2, pp: 952-962. 2022.

[7] Ismail, M. H., S. A. Dawwd, and F. H. Ali, “Arabic Sign

Language Detection Using Deep Learning Based Pose

Estimation”, 2nd International Conference on Engineering

Technology and its Applications 2021, IEEE.

[8] Gondi, S., and V. Pratap, Performance and Efficiency

Evaluation of ASR Inference on the Edge,

 Sustainability 13.22 , 2021.

[9] Ghadani,A., A. K. Abdullah, W. Mateen, and R. G.

Ramaswamy. "Tensor-based cuda optimization for ann
inferencing using parallel acceleration on embedded gpu."

In IFIP International Conference on Artificial Intelligence
Applications and Innovations, pp. 291-302. Springer, Cham,

2020.

[10] Haas, B., “Compressing MobileNet With Shunt Connections
for NVIDIA Hardware”, M.Sc. Thesis, Computational Science

and Engineering, Vienna University of Technology (TU

Wien). 2021.

[11] Patel, B., and V. Sanchez, Inference with Nvidia T4 on Dell

EMC PowerEdge R7425, Dell EMC Technical White Paper.

2019.

[12] hin, D. J., and J.J. Kim. "A Deep Learning Framework
Performance Evaluation to Use YOLO in Nvidia Jetson
Platform." Applied Sciences 12, no. 8, 2022.

[13] Ozgon, D., 3 Ways To Get Started With TensorRT 8

Using TensorFlow, https://becominghuman.ai/3-ways-
to-get-started-with-tensorrt-8-using-tensorflow-

8e419132ee85, 2021.

[14] Baller,S. P., A.l Jindal, M. Chadha, and M. Gerndt, "Deep

Edge Bench: Benchmarking Deep Neural Networks on Edge

Devices." In 2021 IEEE International Conference on Cloud

Engineering (IC2E), pp. 20-30, 2021.

[15] Srivallapanondh, S. B., “Dissecting the Performance of AI

Applications Using NVIDIA GPUs at the Edge”, M.Sc.

Thesis, School Of Science, Department Of Informatics And
Telecommunication, National And Kapodistrian University

Of Athens, 2021.

[16] Lukac M., How to deploy object detection on NVIDIA Jetson
Nano, available at: https://www.ximilar.com/how-todeploy-

object-detection-on-nvidia-jetson-nano/, 2021.

[17] Pettersson, L., “Convolutional Neural Networks on FPGA and
GPU on the Edge: A Comparison”, UPTEC F 20028

Examensarbete 30 hp, Uppsala University, 2020.

Authors Biography

Mohammad Haqqi Ismail received the

BSc and MSc degree in Computer

Engineering in 2009 and 2017 from

University of Mosul, IRAQ. He is work

as assistant lecturer in Technical Com-

puter Engineering, Al-Hadba University

College, Mosul, IRAQ. Currently, He is

PhD student at research stage in Com-

puter Engineering Department Universi-

ty of Mosul, IRAQ. He researches interests include image

processing, deep learning and parallel processing. He can be

contacted at email: mohammadhaqqi@gmail.com.

Prof. Dr. Shefa A. Dawwd is a profes-

sor of computer engineering at the Com-

puter Engineering Department-

University of Mosul. He received the

B.Sc. in Communication Engineering,

the M.Sc. and the Ph.D. in Computer

Engineering. He has authored about 40

international journal, conference papers

and one-chapter book. His research focus is on the

processing acceleration of 1D, 2D and 3D signals, real time

applications, deep learning, Convolutional Neural

Networks, and heterogeneous computing. He is a regular

reviewer of IEE, Elsevier and other Scopus journals. He can

be contacted at email: sheaf.dawwd@umosul.edu.iq.

Dr. Fakhrulddin H. Ali is assistant

professor at the computer engineering

Department-University of Mosul. He

received B.Sc. in Electronic and Com-

munication Engineering-Department of

Electrical Engineering-University of

Mosul. He received P.G. Diploma and

M.Sc. from the same Department at

1977-1979. He graduated from univer-

sity of Bradford-U.K. with a PhD degree at 1989. He has

http://www.ijaceeonline.com/
https://dogaozgon.medium.com/?source=post_page-----8e419132ee85--------------------------------
https://becominghuman.ai/3-ways-to-get-started-with-tensorrt-8-using-tensorflow-8e419132ee85
https://becominghuman.ai/3-ways-to-get-started-with-tensorrt-8-using-tensorflow-8e419132ee85
https://becominghuman.ai/3-ways-to-get-started-with-tensorrt-8-using-tensorflow-8e419132ee85

ISSN: 2456 - 3935

International Journal of Advances in Computer and Electronics Engineering
Volume: 7 Issue: 9, September 2022, pp. 1 – 8

 www.ijaceeonline.com 8

more than 30 scientific papers in journals and conferences.

He supervised more than 25 postgraduate M.Sc. and PhD.

Theses and dissertations. His field of interest is 3D com-

puter graphics and real time systems. He can be contacted at

email: fhazaa@uomosul.edu.iq..

Cite this paper:

Mohammad H. Ismail, Shefa A. Dawwd, Fakhrulddin H. Ali,

"Inference Speed Optimization of Deep Neural Network on
Heterogeneous Devices", International Journal of Advances in

Computer and Electronics Engineering, Vol. 7, No. 9, pp. 1-8,

September 2022.

http://www.ijaceeonline.com/

