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Abstract: A set of models used in detection and recognition of sign language gestures are proposed to increase 

the speed of inference by the concept of optimization using the TensorRT inference accelerator tool. This is done 

by using different devices: Labtop, Jetson Xavier Nx, and Cloud Computing. When TF-TRT Integration 

optimization is applied, the speed of Inference increases about 3x-11x for static sign language recognition 

models and about 1x-3x for dynamic sign recognition models. While when using optimization of applied 

TensorRT (TensorRT C++ API), the speed of Inference increases about 14x-110x for static sign language 

recognition models and about 2x- 10x for dynamic sign recognition models. 
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1. INTRODUCTION 
Detecting hand gestures in real time is a 

challenging difficult problem. The presence or 

absence of a sign in addition to determining the hand 

gesture if it is static or dynamic should be done as 

quickly and accurately as possible [1]. Then 

recognizing hand gestures in real time quickly and 

accurately is done. All of these are in response to a 

sign recorded by a camera that captures a series of 

video frames in different lighting conditions[2]. This 

is done using machine learning methods to detect and 

to recognize gestures and translate them into text. The 

accuracy in detecting and recognizing the static or 

dynamic hand gesture is not only the problem, but the 

speed factor is very necessary in applications with 

time constraints. There is a possibility to use modern 

architectural systems in computers, in order to solve 

the problem of execution time, and improve the 

efficiency of the speed, by relying on multi-core 

CPUs and the GPU, and provides the ability to 

perform tasks in parallel with each other[3]. The 

objective of this research is to speed up the inference 

on GPU and CPU by using different devices for: a- 

Detection model. b- Static single and Multi-Models 

recognition. c- Dynamic single and Multi-Models 

recognition. Heterogeneous computing is a program-

ming paradigm that distributes computational tasks 

across several processor types to complete one work 

quickly and accurately. Central processing units 

(CPUs) and graphics processing units (GPUs) are two 

common processor types that may be used by a heter-

ogeneous application to do portions of the required 

calculations on the CPU and other parts on the GPU. 

To maximize power and performance, heterogeneous 

computing uses a variety of processor types. GPUs 

are computing systems with many compute cores that 

enable highly parallel computation and were initially 

designed for graphics processing. GPUs are made up 

of various computing units, each of which runs sever-

al threads in a lock-step method. For processing, het-

erogeneous computing uses both the CPU and the 

GPU. A GPU aggressively executes context switching 

to hide memory access latency, as opposed to a CPU, 

which employs a hierarchy of memory to speed up 

memory access. As a result, the GPU is best in paral-

lel data applications, whereas the CPU specializes in 

general-purpose computing [4]. 

There are several single and multi-models used in 

the detection and recognition of static and dynamic 

gestures in Arabic sign language Table I. 

Heterogeneous devices are used for the purpose of 

evaluating the optimization of inference.    
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2. METHODOLOGY 

2.1. Inference on Heterogeneous Device 
In Deep Neural Network (DNN), an inference 

process is an act of feeding new input data into a 

trained DNN model to create a prediction in terms of 

values or labels. Several factors affect inference 

performance in computer vision, including the kind of 

DNN model, inference engine, feature extraction, and 

input image size. The measures used to compare and 

analyse inference performance are as follows[8]: 1. 

CPU usage: the rate at which the CPU is used during 

inference. Value is represented as a percentage and 

ranges from 0% to 100%. 2. GPU usage: the rate at 

which the GPU is used during inference it’s ranges 

from 0% to 100%. TableII shows the specifications of 

Devices for training and inference used in this paper. 

 

2.2 Model Performance Optimization(S) 
The goal of this part is to improve model perfor-

mance by optimization using the TensorRT [9] infer-

ence accelerator tool. For real-time assessment and 

on-board feasibility testing on edge devices, this is 

primarily for the purpose of increasing the frame per 

second (FPS) rate. A second benefit is to reduce the 

onboard memory footprint on the target device by 

using different optimization techniques. In DNN, an 

inference process is an act of feeding new input data 

into a trained DNN model to create a prediction in 

terms of values or labels. Several factors affect per-

formance of inference in computer vision, including 

the kind of DNN model, inference engine, feature 

extraction, and input image size. NVIDIA presented 

the TensorRT inference accelerator to optimize the 

trained DNN model for reduced latency and greater 

throughput inference on NVIDIA devices in order to 

increase the speed of DNN inference on NVIDIA 

devices. Layers are combined, kernel selection is 

optimized, and normalization is used to achieve this 

optimization. PyTorch, Caffe, and TensorFlow are 

among the most common machine learning frame-

works supported. TensorRT is based on NVIDIA's 

Compute Unified Device Architecture (CUDA), a 

parallel programming software platform that runs on 

top of their GPUs to conduct application computa-

tions more quickly and efficiently [10]. A model may 

be optimized for inference with three tools provided 

by TensorRT: TF-TRT (TensorFlow-TensorRT) inte-

gration, TensorRT C++ API and TensorRT Py-

thon  API. There are parsers for Caffe, Open Neural 

Network Exchange (ONNX), and TensorFlow models 

included in the previous two tools. Models may be 

created programmatically using the APIs provided by 

C++ and Python. Nvidia's recommended technique for 

importing TensorFlow models into TensorRT is TF-

TRT [11]. TensorRT C++ API and TF-TRT will be 

applied in this work. Each approach used on the 

trained model is briefly described here. 

A. TF-TRT Integration: The TF-TRT integration 

is the most simplest. It may not provide all of Ten-

sorRT's optimization advantages, but it does provide a 

starting point within TensorFlow. Only the portions of 

TensorFlow model that are compatible with TensorRT 

optimizations will be optimized using TensorRT op-

timizations, while the parts that are incompatible will 

remain as TensorFlow operations. This conversion 

method additionally saves the model as a TensorFlow 

Saved Model, allowing to take advantage of Ten-

sorRT improvements while maintaining the Tensor-

Flow model [12]. Figure (1) shows the TensorFlow 

TensorRT workflow. 

 B. TensorRT using TensorRT C++ API: In this 

part, it is demonstrated how to use the TensorRT C++ 

API to make efficient inferences on an existing Ten-

sorFlow model.  TensorRT may be deployed as 

TABLE I MODELS FOR RECOGNITION & DETECTION 

OF ARABIC SIGN LANGUAGE.  

MODEL Reference  

Static Sign 

Language 

Recognition 

Single-model: 

DenseNet121(DEPTH) 

 [5] 

Single-model: 

 VGG16(RGB) 

Multi-model: 

DenseNet121(DEPTH)& 

VGG16(RGB) 

Dynamic 

Sign 

Language 

Recognition 

Single-model: ResNet50-

LSTM(RGB) 

 [6] 

Single-model: ResNet50-

GRU(Depth) 

Multi-model: 

ResNet50-BiLSTM-

Normalization 

Detection 

Sign 

Language   

Pose Estimation Distances 

and Angles  Features 

 + Bi-GRU 

 [7] 

 

TABLE II THE SPECIFICATIONS OF STUDY USED 

DEVICES. 

LABTOP 

CPU 
Intel(R) Core(TM) i7-9750H CPU 

@ 2.60GHz 

GPU 
GeForce RTX 2060 1920 CUDA 

cores 

JETSON 

XAVIER NX 

CPU 6-core @1.2Ghz 

GPU NVIDIA Volta™ 1.1Ghz 384-core  

CLOUD 

COMPUTING 

( KAGGLE) 

CPU 
Intel(R) Xeon(R) CPU @ 

2.00GHz 

GPU 
Tesla P100 15.9GB  3584 CUDA 
cores 
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Create and train 

a Machine Learning 

Model 

TensorFlow 

Saved Model 

Use the pre-trained 

Model 

TRT optimized TensorFlow 

Saved Model 

Perform Inference 

With TensorRT 

 

Or 

 

Deploy with 

Optimize using 

TF-TRT 

Figure (1): TensorFlow TensorRT workflow[13]. 

 shown in Figure (2) by first converting a trained 

model stored in one of the for mentioned frameworks 

to an  ONNX format. The model would next be 

parsed by TensorRT's ONNX parser, which would be 

used to create the TensorRT engine. TensorRT [14] 

works by applying five forms of optimization strate-

gies for enhancing the throughput of deep neural net-

works. First phase, it increases throughput by keeping 

model accuracy while quantizing models to float point 

16-bit )FP16( or 8-bit integer (int8) data 

type precision. This approach considerably decreases 

the model size because it is changed from initially 

FP32 to FP16 version. A layer and tensor fusion ap-

proach is then used to further optimize the utilization 

of onboard GPU memory in the next phase. Kernel 

auto-tuning is the third phase in the process. In this 

most essential phase, the TensorRT engine narrows 

down the ideal network layers and batch sizes de-

pendent on the target GPU. By distributing memory to 

tensors only during the time they are being used, it 

reduces the memory footprint and reuses memory. 

The next stage is to handle numerous input streams in 

parallel and then tune neural networks on a periodic 

basis using dynamically produced kernels. To get the 

most out of the Jetson Xavier NX, it is needed to set 

the power choices to maximum. The commands “sudo 

nvpmodel -m 0” and “sudo jetson_clocks” may be 

used to set the Jetson to maximum power use[16]. 

TensorRT optimizes the network after it has been 

trained, changing the structure in an indeterminable 

manner. Three alternative configurations were used in 

the optimization [17]:  

INT8 – weights and activation have INT8 precision. 

FP16 – weights and activation have FP16 precision. 

FP32 – weights and activation have FP32 precision. 

In this paper, we evaluated the suggested technique 

on an NVIDIA Jetson embedded device with hetero-

geneous accelerators. An octa-core CPU, a GPU, and 

two Deep Learning Accelerators DLAs are included 

on the board. For deep learning processes, the DLA is 

a fixed-function acceleration engine. DLA's goal is to 

accelerate convolutional neural networks entirely on 

hardware. Various layers are supported by DLA. The 

DLA is an accelerator that uses very little power, but 

its processing capacity is much lower than that of the 

GPU. 

 

3. RESULTS AND DISCUSSIONS 
Table III shows the Inference speed on GPU and 

CPU for Sign Detection Model by using different 

devices laptop, cloud, and Jetson. One can see that the 

Inference speed on GPU in the case of using the lap-

Create and train 

a Machine Learning 

model 

Saved model 

Use the pre-

trained model 

ONNX format 

TensorRT optimizer 

TensorRT engine 

TensorRT runtime API 

Machine Learning frameworks 

PyTorch, TensorFlow, Caffe2 

Or 

 

Deploy with 

Create TensorRT engine 

Convert to ONNX format 

Figure (2): TensorRT workflow [15] 

TABLE III INFERENCE ON GPU AND CPU FOR SIGN 

DETECTION MODEL BY USING DIFFERENT 

DEVICES. 

DEVICES 

INFERENCE 

 ON CPU 

INFERENCE 

 ON GPU S
p

eed
 u

p
 

F
P

S
 

G
P

U
 

U
S

A
G

E
%

 

C
P

U
 

U
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A
G

E
%

 

F
P

S
 

G
P

U
 

U
S

A
G

E
%

 

C
P

U
 

U
S

A
G

E
%

 

LAPTOP 43 0 20 42 19 18 0.98x 

JETSON 
 XAVIER NX 

11 0 80 50 60 70 4.5x 

CLOUD 
COMPUTING 

35 0 100 36 4 90 1.03x 
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top or the cloud is close to Inference speed on CPU, 

while in the case of using the Jetson, the Inference 

speed on GPU is up to 5x the speed on CPU. The 

reason for this belongs to the mediapipe that supports 

the GPU in the Jetson, while it is not possible in other 

devices, and it runs on the CPU only. It is also no-

ticed that the Jetson is the fastest at Inference speed 

on GPU. And the laptop is the fastest at Inference 

speed on CPU.  

The Tables IV&V show the Inference on GPU and 

CPU by using different devices as cloud, laptop, and 

Jetson for single and multi-models for static and dy-

namic sign language recognition respectively. In Ta-

ble IV the case of static sign language recognition 

models, the Inference speed on  GPU is slightly faster 

than the Inference speed on CPU.  It is also noticed 

that the laptop is the fastest, in both Inference speed 

on GPU and on CPU. Depending on the specifica-

tions of the devices used: Both laptop and Cloud are 

4.1x-5.2x faster than the Jetson at Inference speed on 

GPU. Also, both laptop and Cloud are 3.4x-7.8x 

faster than the Jetson at Inference speed on CPU. 

 In Table V the case of dynamic sign language recog-

nition models, the Inference speed on GPU is faster 

than the speed on CPU, in Jetson it is about 4.7x-5.3x, 

in the laptop it is 6.3x-9.4x, while in the Cloud com-

puting it is 22.6x-28.2x. It is also noticed that the 

cloud is the fastest, in the Inference speed on GPU, 

and the laptop is the fastest, in the Inference speed on 

CPU. This is because the GPU in the cloud has higher 

specifications, while in the laptop the CPU is the 

highest. The laptop is 4.4x-6.7x faster than both the 

cloud and the Jetson at Inference FPS on GPU. Both 

the laptop and the cloud are 2.5x-4.3x faster than it is 

in the Jetson at Inference speed on CPU.  

The tool TF-TRT Integration was used to optimize 

inference firstly in the models: Single-model: Dense-

Net121 (DEPTH), Single-model: VGG16 (RGB), and 

Multi-model: DenseNet121 (DEPTH) & VGG16 

(RGB) for static sign language recognition and sec-

ondly in the models: Single model: ResNet50-LSTM 

(RGB), Single-model: ResNet50- GRU (Depth), and 

Multi-model: ResNet50-BiLSTM-Normalization for 

dynamic sign language recognition. This optimization 

has been done when the executing of these previous 

TABLE IV INFERENCE ON GPU AND CPU FOR STATIC 

SIGN LANGUAGE RECOGNITION BY USING DIFFERENT 

DEVICES. 

D
E

V
IC

E
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MODEL 

INFERENCE 

ON CPU 

INFERENCE 

ON GPU S
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U
S

A
G

E
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C
P

U
 

U
S

A
G

E
%

 

L
A

P
T

O
P

 

Single-model: 

DenseNet121  
(DEPTH) 

21.3 0 36 26.5 98 19 1.2x 

Single-model:  
VGG16 (RGB) 

21.7 0 62 34.1 98 19 1.6x 

Multi-model: 

DenseNet121 
 (DEPTH) & 

VGG16(RGB) 

16.9 0 66 23.9 96 20 1.4x 

 

JE
T

S
O

N
  X

A
V

IE
R

 N
X

 

Single-model: 
DenseNet121 

 (DEPTH) 

4.3 0 80 5.2 23 70 1.2x 

Single-model: 

VGG16 (RGB) 
2.8 0 70 6.5 47 70 2.3x 

Multi-model: 

DenseNet121 

 (DEPTH) & 
VGG16(RGB) 

2.2 0 80 5.0 58 82 2.3x 

 

C
L

O
U

D
 C

O
M

P
U

T
IN

G
 

Single-model: 

DenseNet121 
 (DEPTH) 

14.6 0 79 21.3 13 62 1.5x 

Single-model: 

VGG16 (RGB) 
10.9 0 96 28.3 6 62 2.6x 

Multi-model: 

DenseNet121 
 (DEPTH) & 

VGG16(RGB) 

8.1 0 100 20.8 13 60 2.6x 

 

TABLE V INFERENCE ON GPU AND CPU FOR DYNAMIC 
SIGN LANGUAGE RECOGNITION BY USING DIFFERENT 

DEVICES. 

D
E

V
IC

E
S

 

MODEL 

INFERENCE 

ON GPU 

INFERENCE 

ON CPU S
p

e
e
d

 u
p
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P
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U
S

A
G

E
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L
A

P
T

O
P

 

Single-model: 

ResNet50-

LSTM(RGB) 

28.8 0 100 180 100 26 6.3x 

Single-model: 
ResNet50-

GRU(Depth) 

38.6 0 100 290 96 21 7.5x 

Multi-model: 
ResNet50- 
BiLSTM-
Normalization 

11.6 0 100 109.4 100 23 9.4x 

 

JE
T

S
O

N
  X

A
V

IE
R

 N
X

 

Single-model: 

ResNet50-
LSTM(RGB) 

8.8 0 96 41.1 98 20 4.7x 

Single-model: 
ResNet50-

GRU(Depth) 

9 0 98 47.4 99 16 5.3x 

Multi-model: 
ResNet50- 
BiLSTM-
Normalization 

4.1 0 100 19.2 99 100 4.7x 

 

C
L

O
U

D
 C

O
M

P
U

T
IN

G
 

Single-model: 

ResNet50-
LSTM(RGB) 

11.4 0 96 258 53 51 22.6x 

Single-model: 
ResNet50-

GRU(Depth) 

12.5 0 98 297 44 55 23.8x 

Multi-model: 
ResNet50- 
BiLSTM-
Normalization 

4.57 0 100 128.7 68 67 28.2x 
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models   by using different devices cloud, laptop, and 

Jetson. The Figures (3&4) show Fps measured by 

using different devices cloud, laptop, and Jetson for 

single multi-models for static and dynamic sign lan-

guage recognition respectively. In Figure (3) the case 

of static sign language recognition models  when us-

ing the optimization, the fastest speed is the cloud. 

There is an increase in the speed of up to 2.6x-4.6x, in 

the DenseNet121 (DEPTH) model and the multi-

model DenseNet121 (DEPTH) & VGG16 (RGB), 

while it reaches up to 6.9x-11.3x for the model 

VGG16 (RGB). This increase as a result of optimiza-

tion is also shown in the Figure (5). In Figure (4) the 

case of dynamic sign language, the fastest speed is 

when using the cloud also. When using the optimiza-

tion, there is an increase in the speed of up to 1.3x-

2.5x. This increase as a result of optimization is also 

shown in the Figure (6). In the case without the use of 

optimization, in static recognition models are slow 

compared to dynamic recognition models, as in the 

first it deals with single image, while in the second 

with a series of frames, and after the optimization, the 

relative increase in the acceleration of static compared 

to dynamic. Figures (3&4) also confirm that the singe 

model form is faster than the multi-model. 

The tool TensorRT using TensorRT C++ API was 

used firstly to optimize the inference in the models: 

Single-model: DenseNet121 (DEPTH), Single-model: 

VGG16 (RGB), and Multi-model: DenseNet121 

(DEPTH) & VGG16 (RGB) for static sign language 

recognition and secondly in the models: Single-

model: ResNet50-LSTM (RGB), Single-model: Res-

Net50-GRU (Depth), and Multi-model: ResNet50-

BiLSTM-Normalization for dynamic sign language 

recognition. This optimization has been done when 

executing these models   by using Jetson device. The 

Figure (3): Fps measure for recognition of static 

sign language for single and multi-models using 

different devices. 

Figure (4): Fps measure for recognition of dynamic 

sign language for single and multi-models using 

different devices. 

Figure (5): Speed up Inference for Recognition of Static 

Sign Language for Single and Multi-Models by Use 

Different Devices. 

 

Figure (6): Speed up Inference for Recognition of 

Dynamic Sign Language for Single and Multi-Models by 

Use Different Devices. 
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Figures (7&8) show the Inference Fps on GPU meas-

ure by using JETSON device for Static and Dynamic 

Sign respectively. And the Figures (9&10) show the 

speed up of inference on GPU measure by using 

JETSON device for static and dynamic sign language 

recognition respectively.  

From the comparison between the Inference speed 

in the case of static sign language and dynamic sign 

language, the Inference speed in dynamic sign lan-

guage is much greater than in static one before the 

optimization process, ranging from 3.8x to 7.9x, while 

on the contrary after the optimization process, the 

Inference speed ratio in static sign language to dy-

namic sign language, is ranging from 0.8x to 1.5x.  

The figures also confirm that the single model form is 

faster than the multi-model. From comparing the in-

crease in speed as a result of optimization according 

to the models, the single model DenseNet121  

(DEPTH) changes from 24.2x to 110.2x and the sin-

gle model VGG16 (RGB) from 18x to 64x, then the 

multi- model DenseNet121 (DEPTH) & VGG16 

(RGB) from 13.6x to 36.4x this in the static sign 

recognition models. While the increase in speed was 

the result of optimization in the dynamic sign recogni-

tion models, as it was from 2.2x to 9x for the single 

model ResNet50-GRU (Depth) and the single model 

ResNet50-LSTM (RGB) 2.5x to 4.9x, and then from 

2.7xto 10.4x by the multi- model ResNet50-BiLSTM-

Normalization. From the comparison among Figures 

(5 &6) and Figures (9 & 10), it is clear that there is a 

high acceleration in the TensorRT C++ API method 

compared to the acceleration in the TF-TRT method 

for static and dynamic sign language recognition 

models using the Jetson device.  

Figure (10): Speed up inference on GPU measure for 

dynamic sign language recognition using Jetson device 

Figure (9): Speed up inference on GPU measure for static 

sign language recognition using Jetson device Figure (7): Inference FPS on GPU measure for static 

sign language recognition using Jetson device 

Figure (8): Inference FPS on GPU measure for dynamic 

sign language recognition using Jetson device 
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2. CONCLUSION 
Through a review, and analysis of presented previous 

researches with regard to detecting and recognizing of 

sign language and by discussing and analyzing Tables 

I and II, which include a survey and comparison of 

the presented researches in this paper, the following is 

clarified: The deep learning-based classifier per-

formed better than all the various classifiers in terms 

of recognition accuracy of sign     language.  There is 

no use of the multi-model fusion to recognize 

 Arabic sign language. There is no evaluation of the 

different methods of fusion models to recognize Ara-

bic sign language. In general, the average accuracy 

rate of 23 searches to recognize sign language by stat-

ic hand gesture is 94%, and the average accuracy rate 

for 25 searches to recognize sign language by dynam-

ic hand gesture is 86%, therefore it is necessary to 

develop a single model or multiple models to increase 

the performance and accuracy of the static and dy-

namic Arabic Sign Language recognition.  
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