
 www.ijaceeonline.com ISSN: 2456 - 3935

International Journal of Advances in Computer and Electronics Engineering
Volume: 7 Issue: 11, November 2022, pp. 1 – 6

An Approach to Performance Optimization of

WSO2 Platform to Improve its Throughput

Stanley Makori Ondero
Department of Computer Science,

Jomo Kenyatta University of Agriculture and Technology, Kenya

Email: stanmakori@gmail.com

Wilson Cheruiyot
Department of Computer Science,

Jomo Kenyatta University of Agriculture and Technology, Kenya

Email: wilchery68@jkuat.ac.ke

Michael Kimwele
Computer School of computing and information technology,

Jomo Kenyatta University of Agriculture and Technology, Kenya

Email: mkimwele@jkuat.ac.ke

Abstract: Application programming interface (API) performance is central to the overall success of companies

that offer their services through Open APIs. [3] surveyed on maturity levels of Open API using open-source API

gateway (WSO2) API platform, identifies performance as one of the issues facing adoption of open-source

gateways. Although various approaches to optimization have been proposed [7], there is no academic

documentation on the effectiveness of Redis server in an open-source API gateway, particularly WSO2.

Furthermore, an optimization technique depends on the application and other configuration parameters. This

research presents an empirical evaluation to compare two performance optimization techniques namely

application level and Redis caching using open source WSO2 API gateway. By inspecting the obtained results,

it was observed that for API consumers below 100, the performance is almost the same. This means that for

internal consumption or low situations that have low traffic demand, it is economical to use internal

application-level caching.

Keyword: API, Throughput, XML, JSON, JMeter, Redis

1. INTRODUCTION
There is an accelerated growth in digital services

for various industries. These are powered by a suite of

web services and APIs. APIs and web services have

been around since early 90s [11]. To fully realize the

potential value of APIs, organizations should under-

stand their usage, potential business models and mon-

etization strategies should be present [6]. Leading

organizations in the API economy such as WSO2,

Oracle with their Fusion Middleware API Manager,

Google with Apigee, Amazon Web Service with Am-

azon API gateway, Red hat with their API Connect

and many others, have created API management plat-

forms to expose their assets as well as sell to their

partners [11]

API management platform has multiple compo-

nents. This includes an API Gateway where runtime

policies such us throttling and payload size are created

and enforced, a Security component for access and

API key management, a Developer Portal which pro-

vides a centralized location for developers to discover,

subscribe to and test APIs and generate their access

keys (consumer key and secret key), an API Publisher

designing and publishing APIs, an API Analytics in-

telligence on API usage, security threats, monitoring

and streaming of traffic etc.

1.1 Top API Management gateways
According to online research firm, Gartner, the

2021 review identified the following as the top API

management platforms:

i)AmazonAPI Gateway –used purely for Amazon’s

webservices consumption, the gateway is described to

be easy to use and easy to manage.

Cite this paper:
Stanley Makori Ondero, Wilson Cheruiyot, Michael Kimwele, "An

Approach to Performance Optimization of WSO2 Platform to

Improve its Throughput", International Journal of Advances in
Computer and Electronics Engineering, Vol. 7, No. 11, pp. 1-6,

November 2022.

ISSN: 2456 - 3935

International Journal of Advances in Computer and Electronics Engineering
Volume: 7 Issue: 11, November 2022, pp. 1 – 6

 www.ijaceeonline.com 2

ii)Google Apigee – A commercial API management

system. Can be provided both on premise and on-

cloud. Provides both web and backend services. Man-

ufactured by google.

iii)MuleSoft – Commercial API gateway which pro-

vided both API publisher and enterprise service bus.

Manufactured by MuleSoft LLC.

iv)Microsoft Azure API management system – A

commercial API management system that is said to be

fast in push and pull requests, from Microsoft corpo-

ration.

v)IBM API Connect – Commercial API management

system from IBM. Suitable for direct P2P connections

and lacks ability for complex API manipulations.

vi)WSO2 – Open-source API Micro-gateway that is

rich in API mediation and transformation. Provides

ESB for messaging, Kafka powered stream processor

for real-time streaming.

vii)TIBCO Mashery – Cloud based that was initially

targeted at exposing its sister API exchange gateway

services.

1.2 Challenges of API management system.
Literature has pointed out the following as the key

impediments to the maximization r adoption of API

management gateways.

i. Social - lack of awareness of the significance of the

platforms to the enterprise, the cost of acquiring and

implementing and inability to sustain them once in

operation [3][9].

ii. Technical and complexity in API transformation

[7].

iii. Performance of API gateways as compared to

normal webservices [2][10]

This research focused on performance challenges

and proposed one of the ways to mitigate the produc-

tion issues faced by enterprises that have embraced

the concept of exposing their digital services through

API management gateways.

1.3 Problem Statement
Performance of API Management is a top re-

quirement for the successful running of open APIs,

yet it is a top challenge experienced by many Open

API practitioners [9]. The messages delay in delivery,

or they are dropped completely, and the request initia-

tors must always initiate call-backs to check the status

of their requests.

WSO2 platform performance declines significant-

ly in content-based routing scenarios. The most effec-

tive and basic form of optimization for APIs is cach-

ing [15]. Storing tokens and access keys reduces data-

base or backend roundtrip. Currently, the available

caching mechanism for WSO2 API gateway is

standalone server-side caching. However, the token

isn’t cached across multiple clusters in a distributed

setup of the gateway, which means authentication

must be done multiple times since the instances are

load balanced. According to [13], the effectiveness of

application-level caching largely depends on the ap-

plication, the presence of invalid recommendations

and additional configurations such as time-to-live for

the caching protocol in use. Secondly, using a distrib-

uted cache via Redis or Memcached or any graph da-

tabase allows the Oath2 token to be cached once and

can be shared among the cluster servers and instances.

Thirdly, the available optimization mechanisms have

been evaluated individually; however, their effective-

ness on API gateways specifically WSO2 have not

been compared. This research presents an empirical

evaluation to compare two performance optimization

techniques namely application level and Redis cach-

ing using open source WSO2 API gateway.

1.3 Research objectives
The main objective of this research implemented

an approach that will optimize WSO2 API manage-

ment platform throughput and API response times.

2. LITERATURE REVIW
The literature on the performance of open-source

API management platforms like Gravitee, APIMan

and WSO2 has been clearly outlined. Most research is

based on raw Java as API client, giving room for new

research based on frameworks like SpringBoot and

okhttp. The literature available compares the perfor-

mance of similar platforms like Apache ServiceMix

ESB, WSO2 ESB and MuleSoft ESB with related

platforms, focusing on their response times. This

gives room for research on individual platforms under

certain conditions and targeting additional parameters

like throughput and resource utilization.

[17] have compared the performance of Redis and

relational databases. The approach used was by query-

ing the two databases and document their perfor-

mance. In their findings, the research found Redis to

10 times faster than the relational database under con-

sideration. This research didn’t mention the specific

database it targeted, because various relational data-

bases behave differently under different conditions. It

is therefore not correct to conclude that Redis does

better than all databases in all scenarios without carry-

ing out empirical evidence. The other gaps in the re-

search include comparing Redis with other NoSQL

databases like MongoDB, resource consumption of

Redis when returning responses and comparing it with

internal caching for web servers and API gateway

http://www.ijaceeonline.com/

ISSN: 2456 - 3935

International Journal of Advances in Computer and Electronics Engineering
Volume: 7 Issue: 11, November 2022, pp. 1 – 6

 www.ijaceeonline.com 3

platforms. The research agrees with another research

by [20] which used the same procedure and found

Redis queries to be 3.3 times faster than MySQL, tak-

ing 52 milliseconds to respond compared to MySQL

which takes 61 milliseconds. There is room to use the

same approach but research on web-based platforms

like API gateway and web servers.

[16] has created a parallel, scalable, effective, re-

sponsive and fault-tolerant framework to perform end-

to-end data analytics tasks in real-time and batch-

processing manner, using Twitter posts as a case

study. The approach was caching posts in Redis as

message broker and MongoDB for backend storage.

But according to [20], Redis at its core is a caching

tool and not a specialist message broker. Therefore,

the findings could be different when using typical

message brokers [5]. There is also room to stream

Twitter posts using a specialist API gateway with a

distributed message broker and a graph database as

the backend.

[19] proposed a model for optimizing HBase data-

base when working with Redis server. The model

improves the ability of rapid acquisition and analysis

of image data and achieve a higher retrieval efficiency

about image data. There is room to use the same ap-

proach but optimize API gateway or web servers.

As seen above, there was need to research and de-

velop an approach that improves the performance of

Open source WSO2 API management platform for

better throughput and response times. This area had

not been covered in any of the academic work.

3. METHODOLOGY

A. Conceptual design

Figure 1: APIM-Conceptual model

B. Introduction.

The purpose of the paper was to develop an

approach that will optimize WSO2 API man-

agement platform throughput and API response

times. In this section, the research details the

methodology used to accomplish the objective.

First, a basic payload was created to create a

customer order and return the order details from

a listening API.

{

 "customerName": "string",

 "address": "string",

 "MobileNo": "integer",

 "OrderQuantity": 0,

 "DeliverTo": "string"

}

C. Experiment setup

Redis 5.5 server was integrated with WSO2 API

gateway. Jedis 3.6.0 library was used to allow WSO2

gateway to run Redis commands from the gateway

and cash static and repeat requests and tokens. The

internal cache of WSO2 is limited to caching tokens

and in a distributed setup, each server must re-

authenticate the tokens a fresh. Therefore, a fast, cen-

tralized in memory and caching platform is preferred.

A basic Rest API was created and published in WSO2

portal. The test user subscribed to the published API

and accessed it from Apache JMeter 5.5, which acts

as API client as well as collecting performance met-

rics.

The datasets used for analysis were obtained by

collecting performance metrics e.g., response time

and throughput when a given set of concurrent users

invoke the API. The concurrent users were simulated

by JMeter threads and samples transactions were con-

figured using JMeter’s loop counter.

The primary pre-processing of the WSO2 API op-

timization approach was to allow API consumers to

post their queries and receive the responses in a short-

er time. This was achieved through invoking the API

form Apache JMeter and then collecting the response

payload and the time it takes to get response, among

other metrics. The following is the layout and the

components that were used in the experiment:

Figure 2: Experimental setup

The research follows quantitative research. This is

because it collects data from available APIs. It is done

int two phases: one phase will use a generic WSO2

http://www.ijaceeonline.com/

ISSN: 2456 - 3935

International Journal of Advances in Computer and Electronics Engineering
Volume: 7 Issue: 11, November 2022, pp. 1 – 6

 www.ijaceeonline.com 4

API gateway and fire API call from Apache JMeter

and performance parameters including throughput,

transactions per second and memory footprints. The

second phase will involve introducing Redis as a

caching tool and the said performance metrics be rec-

orded. Redis was preferred over Memcached because

of its simplicity of use and research shows that it is

faster than most of the available caching tools.

4. RESULTS AND DISCUSSIONS

A. Performance without Redis cashing server

Figure 3: Performance Without Redis

B. Performance after adding Redis caching

server

Figure 4: Performance After Adding Redis

High performannce is noted overall for Redis un-

der high traffic API.Response times percentiles are

less than 25ms up to 950 concurent users when using

an external cache whereeas less than 35 for the same

number of concurrent users when querying the gate-

way backend. It is also noted that in some cases, the

gateway can peform without erros up to 1400 concur-

rent users. However, querying the gateway backend

directly performs optiomally up to 950 concurrent

users, after which, it generates backend errors, drop-

ping new calls and thus responding faster. This is in-

dicated by low resposne times after 950 concurrent

users.

When traffic is low, that is, below 100, both ap-

proaches perform largely the same. Throughput and

response are the same. Between 100 and 800 users,

we notice that Redis improves response time by 5.6%

and throughput by an average of 3.5%. This result is

based on a personal laptop and if applied in an enter-

prise setup where the servers are clustered, the bene-

fits are deemed to go higher. Secondly, the research

found that without Redis, backend errors start occur-

ring form 800 concurrent users. The backend errors

imply the blocked API calls. When Redis is intro-

duced, it was found that the API gateway can serve

1200 concurrent users without blocking API calls or

generating backend errors. This is a 30% improve-

ment from [4] who used request bundling technique

which is found to be memory intensive according to

[6] ,[7] and [13]and which cannot solve the unique

case of distributed their party APIs.

Figure 5: Concurrency errors

5. SUMMARY

WSO2 API gateway is an open source platform

that has been adopted by many organisations to

expose their valuable monetary assests for third

parties. Banks , telecommuications companies and

gorvernment agencies adopt the platform to offer

various digital services. However, the platform

servers perfomance degradation under under pick time

. This ranges from the complexities involving

transformation of simpler Rest API to SOAP

messages that are supported in the backend ,repeated

user authentication using Oauth2 tokens and repeated

static contents that are queires by the API consumers.

This needs to be adddresed. Whereas the common

approach to addressing performance bottlenecks is

addition of computing resources , resouces are not

infinite. It is therefore necessary for organisations to

innovate various ways of addressing performabce

challenges without necessarily expanding their ICT

budgets. One of the solutions is to figure out on how

to ensure repeat and static responses can be served

without hitting the backend. In so doing, you free the

backend and let it serve only new and unique requests.

 Whereas most servers support internal caching

mechanism, this research haa shown that internal

caches perform poorly under high traffic. Similary , in

a distributed setup, this is not possible because servers

in the cluster do the caching individually.

 A central cache means that they share the tokens,

keys , mediation flows and other static contents before

they expire. More concurrent users mean more re-

http://www.ijaceeonline.com/

ISSN: 2456 - 3935

International Journal of Advances in Computer and Electronics Engineering
Volume: 7 Issue: 11, November 2022, pp. 1 – 6

 www.ijaceeonline.com 5

quests to the API manager gateway. Therefore, the

throughput of the implemented WSO2 API Manager

Gateway increases as the number of concurrent users

accessing the APIs increases. The maximum through-

put is obtained for 100 concurrent users for both

“High performance mediation API” and “implement-

ed WSO2 API manager,” and the throughput degrades

slightly after 100 concurrent users due to resource

contentions in the system. The degradation point

mainly depends on hardware resources.

6. CONCLUSIONS
The research has investigated the available opti-

mization techniques namely: Memoization, caching

using an external caching specialist platform and bun-

dle splitting. Caching was chosen for this research.

This addressed the first objective. The research intro-

duced Redis server to aching tokens and repeat re-

quests. As discussed, this has shown a performance

improvement in terms of response time by 5.6% and

throughput by 3.5%. This is in relative to the works of

[15] who proposed a SOAP framework suitable for

feature or low-end mobile devices, [14] whose work

was based is a survey of the available caching mecha-

nisms but the research doesn’t give their effectiveness

in various scenarios like distributed APIs. [1] has pro-

posed mediation sequences using enterprise integra-

tion patterns, but the research falls short of the mech-

anisms for improving performance during mediation.

This research builds a foundation for improving cach-

ing and performance during mediation operation. Alt-

hough the works of [13] gives a framework for im-

proving performance by scaling in-memory storage,

the approach is too generic. For instance, the frame-

work hasn’t been tested on specialist and high

throughput tools like Redis, Memcached and other

proprietary tools. The framework proposed in this

research is scalable, extensible and can be applied in

unlimited number of caching and performance opti-

mization platforms.

A. Areas of future research
This research focused on a passthrough API of

same payload size. Future research will focus on

XML to Json transformation in which caching of me-

diation headers and other static mediation contents is

needed, and payloads are of varying length. Future

research to also assess performance gains in a distrib-

uted setup where the gateway is load balanced using

available load balancers like and enable the servers in

a cluster to share the cache, compared to a scenario

where the servers are using internal cache.

B. Abbreviations

API- Application programming interface.

Redis- an open source in-memory caching platform.

ICT- Information and communications technology.

SOAP- Simple Object Access Protocol.

Rest- Representation State Transfer.

WS02- An Open-source API gateway.

XML- Extensible Markup language.

JMeter- an open-source performance testing platform.

Oauth2- Open authentication standard version 2. For

authenticating two sites without sharing password.

AVG- Average.

Req/Sec- Requests per second.

RMI- Remote method invocation.

JDBC- Java database connectivity.

7. DECLARATIONS

C. Ethics approval and consent to participate.
I hereby authorize the publisher to engage all kinds of

ethical checks on the paper.

D. Consent for publication
I hereby authorize the publisher to publish this paper

E. Availability of data materials
The data obtained from the experiment has been sup-

plied through online attachments. I will be available

to provide any missing data artifacts.

F. Competing interests.
This is my original work and there are no competing

interests whatsoever.

G. Funding
No funding nor sponsorship of any kind has been ap-

plied in this research.

H. Authors’s contributions.
I, Stanley Ondero, is the author of the main author.

Prof Wilson and Dr. Michael also played a significant

role in guiding me through the research, giving me

feedbacks and corrections.

I. Acknolwledgements
I acknowledge my supervisors listed above for their

immense contributions in the research.

REFERENCES

[1]. Cloud, W. A. (2022, 1 26). API mediation and sequence.

Retrieved from Add Sample mediation sequence:
https://cloud.docs.wso2.com/en/latest/learn/message-

mediation/add-a-sample-mediation-sequence/

[2]. Coleman. (2016). APIs: Building A Connected Business in

the App.

[3]. E. E. (2020, August 27). Open Banking. Technology and

innovation: Bnaking APIs, pp. 33-41. Retrieved from

Investopedia: https://www.investopedia.com/terms/o/open-
banking.asp

[4]. El, M., & Amine. (2021). Evaluation of API Request

Bundling and its Impact on Performance of Microservice
Architectures. IEEE International Conference on Services

http://www.ijaceeonline.com/

ISSN: 2456 - 3935

International Journal of Advances in Computer and Electronics Engineering
Volume: 7 Issue: 11, November 2022, pp. 1 – 6

 www.ijaceeonline.com 6

Computing (SCC 2021), (pp. 3-6). Virtual conference.

doi:10.5281/zenodo.5087467

[5]. GUO FU, Y. Z. (2020). A Fair Comparison of Message

Queuing. 1-3. doi:10.1109/ACCESS.2020.3046503

[6]. IBM Institute for Business Value. (2016). Evolution of the

API economy. In I. I. Value, Adopting new business models

to drive future innovation (pp. 1-2). Somers, NY 10589:
IBM.

[7]. Kavita, D. H., & Rodd, S. (2021). Optimal web service

composition using hybrid optimization algorithm in cloud
environment. Proceedings of the International Conference

on Innovative Computing & Communication (ICICC) 2021.

doi:https://dx.doi.org/10.2139/ssrn.3834957

[8]. Martin, & R., A. (2021). PyPortfolioOpt: portfolio

optimization in Python. Journal of Open Source Software, 6-
61. doi:https://doi.org/10.21105/joss.03066

[9]. Max, M., Michiel, O., & Slinger, J. (2021). Focus Area

Maturity Model for API Management. Journal of Computer

Science and Technology, 11-130.

[10]. MCkenzie, & Cameron. (2020, April 1). open API (public

API). Retrieved from Tech Target Network.

[11]. Mifan, Careem. (2017, JUNE). Building an API Strategy

Using an Enterprise API Marketplace., (pp. 45-53).

[12]. Nebro, A., Pérez-Abad, J., Aldana-Martin, J., & García-

Nieto, J. (2021). Evolving a Multi-objective Optimization

Framework. In E. Osaba, & X. (. Yang, Applied Optimization

and Swarm Intelligence. Springer Tracts in Nature-Inspired
Computing (pp. 175-198). Singapore: Springer.

doi:https://doi.org/10.1007/978-981-16-0662-5_9

[13]. Romulo, M., & Ingrid, N. (2022, July 30). A Comparative

Study of Application-level Caching Recommendations at the

Method Level. (2-9, Ed.) Empirical Software Engineering,
88. doi:https://doi.org/10.1007/s10664-021-10089-z

[14]. S. Chen, X. T. (2016). Towards Scalable and Reliable In-

Memory Storage System: A Case Study with Redis. 2016
IEEE Trustcom/BigDataSE/ISPA,, (pp. 1660-1667).

doi:DOI: 10.1109/TrustCom.2016.0255

[15]. Schubotz M, S. A.-P. (2022, April 22). Caching and

Reproducibility: Making Data Science Experiments Faster

and FAIRer. National center for biotechnology information.
doi:https://doi.org/10.3389%2Ffrma.2022.861944

[16]. Singh, R. K., & Verma, H. K. (2022, April). Redis-Based

Messaging Queue and Cache-Enabled Parallel Processing

Social Media Analytics Framework. The Computer Journal,

843–857. doi:https://doi.org/10.1093/comjnl/bxaa114

[17]. Spal, G., & Kaur, J. (2018). In-Memory Data processing

using Redis Database. International Journal of Computer
Applications, 1-5.

[18]. Talaam, O., George, O., & Mike, K. (2018). A Simple Object

Access Protocol(SOAP) Messaging for Mobile devices in
android Platform. International Journal for advance in

computer science and technology, 48-58.

[19]. Zhou, L., Lu, B., Zhang, S., & Qi, L. (2020, July). Data

Cache Optimization Model Based on HBase and Redis., (pp.

31-35). doi:https://doi.org/10.1145/3414274.3414279

[20]. Zulfa, M. I., Fadli, A., & W, W. ,. (2020, April). Strategi

caching aplikasi berbasis in-memory menggunakan Redis
server untuk mempercepat akses data relasional. Jurnal

Teknologi dan Sistem Komputer, 157-163.

doi:https://doi.org/10.14710/jtsiskom.8.2.2020.157-163

Authors Biography

Stanley Makori Ondero, is a

student at Jomo Kenyatta Univer-

sity of Agriculture and Technolo-

gy. He completed his B.sc in

computer Science form Egerton

university in 2011. His research

interests are artificial intelligence,

distributed systems and program-

ming language design.

Prof. Wilson Cheruiyot, is a

professor, School of computer

science and information technol-

ogy at Jomo Kenyatta University

of Agriculture and Technology.

He completed his B.sc in com-

puter Science form the same uni-

versity in 1994. Thereafter, he

completed master’s in computer

applications technology from

Central South University of technology, China, in 2002 and

Doctor of Philosophy in computer technology, specializing

in intelligent agents, in 2012. His research interests are arti-

ficial intelligence, distributed and internet databases, sys-

tems and communication systems.

Dr. Michael Kimwele is a Lec-

turer in the Department of Com-

puting, Jomo Kenyatta University

of Agriculture and technology

(JKUAT). He holds a BSc. Math-

ematics and Computer Science-

First Class Honors from JKUAT

(2002), a master’s in information

technology management from

University of Sunderland UK (2006) and a Doctorate in

Information Technology from JKUAT (2012). At present,

he is the Associate Chairman, Department of Information

Technology, JKUAT-Nairobi Campus. Dr. Kimwele has

authored a commendable number of research papers in in-

ternational/national conference/journals and supervises

postgraduate students in Computer Science/Information

Technology. His research interests include Information

systems management, Information Technology Security,

Electronic Commerce, Mobile Computing, Social implica-

tions of computer applications, Human Computer Interac-

tion, and Computer Ethics.

Cite this paper:

Stanley Makori Ondero, Wilson Cheruiyot, Michael Kimwele,

"An Approach to Performance Optimization of WSO2
Platform to Improve its Throughput", International Journal of

Advances in Computer and Electronics Engineering, Vol. 7,

No. 11, pp. 1-6, November 2022.

http://www.ijaceeonline.com/

